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Steady-state currents in sharp stochastic ratchets
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We develop and analyze a model for particle transport in a stochastic ratchet with a periodic piecewise linear
potential, with diffusion coefficientD, where the force is discontinuous in position and fluctuating in time via
additive telegraph noise with correlation timet. We find asymptotic formulas for the steady-state particle
currentJ for large and smallD andt. For example, for smallt, the sharp corners in the potential lead toJ
5O„t2 exp@2(Dt)21/2#…1O(t5/2), in contrast toO(t3) when the potential is smooth. We show that diffusion
can increase or decreaseJ, and derive an approximate equation for the value ofD that maximizesJ.
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PACS number~s!: 82.20.Mj, 02.50.Ga, 05.40.Jc, 87.10.1e
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I. INTRODUCTION

In recent years there has been a surge of interest in no
driven ratchets: stochastic dynamical systems with asymm
ric periodic potentials, driven by a time-dependent exter
force @1#. There has been speculation that biological syste
take advantage of the interplay between thermal diffus
and the fluctuating external force to transport molecules
vesicles@2–5#. Attempts have been made to use the pr
ciples of stochastic ratchets to design devices for separa
of molecular or particulate moieties@6–10#. In the study of
noise-induced transport, an important goal is to calculate
steady-state current of the system. If this is nonzero, it in
cates that useful work is being extracted from the exter
force.

At the present stage of research, it is necessary to w
down relatively simple dynamical systems to model the v
complex biological or technological mechanisms. The
models are studied in order to provide insight as to the in
play between the parameters that affect the current: the
fusion coefficient, and the spatial and temporal structure
the external forcing. From the solutions to such models,
wish to learn how actual systems may work and might
controlled@6,7,9#. For these purposes, we seek analytical
sight deeper than can be provided by numerical soluti
@11–13#. Such insight is necessary because even sim
model ratchets display a rich variety of behaviors that v
markedly with the system parameters. Capturing the
range of these possibilities—and the transitions betw
them—as several parameters change is quite difficult w
numerical solutions alone.

There are several categories of models for stocha
ratchets. The temporal variations of the external force can
a deterministic function~usually periodic@7,9,14#!, or can be
a stochastic process with nonzero correlation time@1,15#.
Stochastic forcing is usually taken to be a stationary Mark
stochastic process with a discrete or continuous state s
@4–6,11,12,15–18#. Two possible forms for the spatial struc
ture of the external force have received most attention:
‘‘fluctuating force’’ and ‘‘fluctuating barrier’’ cases@4,12#.
PRE 601063-651X/99/60~4!/3727~9!/$15.00
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The first is the case where the force is constant in space;
is, the driving noise is additive@1,16,18#. An example of the
second case is when the shape of the periodic pote
changes randomly in time; this is an example where the d
ing noise is multiplicative@3,19,20#.

There are two types of noise present in a ratchet driven
an external stochastic force. The first noise stems from th
mal fluctuations, which in the Langevin and Smoluchows
framework are described by diffusion. In other words, t
diffusion is the result of internal thermal interparticle inte
actions and follows the fluctuation-dissipation principle. It
well known that such diffusion alone cannot perform use
work in the steady state. The second noise—the exte
force—is usually taken to be a stochastic process with n
zero correlation time. For example, in biological syste
these fluctuations may arise from intermittent chemical re
tions which affect the distribution of electric charge a
therefore alter the electric potential. These fluctuations
perform useful work, since they are driven by an exter
energy source~e.g., ATP molecules! @2,4,8,10#.

In this paper, we consider a two-state stochastic fluctu
ing force model. In the liquid~high damping! phase, the
diffusive dynamics of a particle in a thermal bath can
reduced from the Langevin second order equation to
Smoluchowski first order equation. We consider on
dimensional motion, where the particle position is deno
by x(t). Our nondimensionalized model for the particle d
namics is

ẋ~ t !52U8~x!1A2Dẇ~ t !1j~ t !, ~1!

whereU(x) is the deterministic potential,ẇ(t) denotes stan-
dard Gaussian white noise, andj(t) is a stochastic proces
independent ofẇ(t) @j(t) will be specified below#.

There are three time scales that need to be considere
these problems.~The very short time interval between the
mal scattering events has been removed by the Sm
chowski approximation.! The first time scale is characterist
of the force fluctuations,j(t). We denote this time scale b
t. The second time scale, 1/D, is proportional to the time it
3727 © 1999 The American Physical Society
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takes a particle to diffuse a unit distance. The third time sc
is associated with the deterministic dynamics; this time
proportional to max@1/uU9(x)u1/2#. In any given model prob-
lem ~1!, the relationships among these three time scales a
key factor in determining the steady-state particle curren

A case when the force fluctuations occur more rapi
than the other two time scales has been studied by u
asymptotic and numerical methods@11#. In this problem, the
steady-state current is proportional tot3 as t→0. The
asymptotic analysis breaks down when the dynamics t
scale is significantly shorter than botht and 1/D, since the
coefficient of t3 diverges as maxuU9(x)u→`. This happens
when the forceU8(x) changes abruptly over a very sma
distance. In such a case, we say that the potential has a s
corner. We model this corner as perfectly sharp, so
U8(x) is only piecewise continuous. Numerical results in
cate that with such a potential, the steady-state curren
proportional tot5/2 as t→0, instead of thet3 that occurs
with smooth potentials@18#.

We consider the simplest such potential over the en
real line, which is piecewise linear and periodic:

U~x!5H qL~x2n! xP~n,a1n!

qR~x2n21! xP~a1n,n11!
n50,61,62, . . . ,

wherea[2qR /(qL2qR) ~see Fig. 1!. Without loss of gen-
erality we assume thatqL.0, qR,0, and we have set th
period of the potential to be 1. We take the fluctuating fo
j(t) to be the zero mean symmetric telegraph process, ta
on values6a with exponentially distributed switching times
with parameter 1/(2t). In order to ensure the existence of
steady-state current, even in the absence of diffusion, we
assume thata.max$qL ,uqRu%, so that the force alternates b
tween positive and negative.

The problem posed above can be solved in closed fo
with the solution expressed in terms of the roots of a fou
order polynomial~see Sec. III!. Indeed, this is one reaso
that thisU(x) has been widely used in previous modeli
efforts @1,4,12,18#. The exact solution is algebraically ver
complicated and gives no direct insight. We derive simp
and more useful asymptotic expressions for the steady-s
currentJ for all four possible combinations ofD small and
large,t small and large.~We keep the jump sizea indepen-
dent ofD andt in these limiting cases.! The order in which
these limits are taken is important in some cases.
asymptotic dependence ofJ in all of these regimes is system

FIG. 1. Potential in a typical periodic sharp ratchet. Herea5
2qR /(qL2qR), with slopes denoted byqL andqR . ~All variables
are dimensionless in this and other figures.!
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atically and rigorously calculated. Some aspects of o
dimensional dynamics driven by fast (t!1) jump noise
have been studied previously@21#, in the caseD50. It was
shown that the correct asymptotic expansion is in powers
t1/2; however, in the case whereU(x) is smooth, all of the
coefficients of fractional powers oft in the expansion ofJ
turn out to be zero. In the present model, it is necessar
retain the fractional powers oft to get the correct current.

The derivation of our results is straightforward in pri
ciple, but very lengthy in practice; the procedure we dev
oped is outlined in Sec. III. The results were checked us
direct numerical solutions of the fourth order polynomia
followed by numerical solution of the linear system of equ
tions for the steady-state probabilityp(x,j).

We find thatJ5O„t2 exp@2(Dt)21/2#…1O(t5/2) for small
t. For D<O(1) as t→0, the first term is exponentially
small and the numerical prediction thatJ5O(t5/2) is veri-
fied. However, for largeD>O(1/t) as t→0, the first term
affects the magnitude ofJ. Keeping this term is essential t
understand the dependence ofJ on D in the smallt case, as
D changes from small to large. This result would be diffic
to obtain from purely numerical solutions, and illustrates t
additional insight that analytical asymptotic methods c
bring to the solution of a problem. We also find that for sm
t, there is a nonzero value ofD that maximizes the current
and we derive an approximate equation for this optimalD
~28!. These results show thatJ can be asymptotically large
for sharp ratchets than for smooth ratchets, and also show
conditions that are needed to obtain the maximal current

WhenD!1, we find thatJ is algebraic inD. The size of
the current varies from transcendentally small toO(1) ast
changes from asymptotically small to large. The case w
both D!1 andt!1 is where the order of the limiting op
erations matters:D!t!1 is different thant!D!1. The
transition between these two regimes occurs whenD
5O(t)!1; the current is transcendentally small in th
limit. WhenD@1, the current vanishes algebraically as 1/D4

for arbitrary t. These two limits are why there is aD that
produces a maximal current for small enought. For largert,
J is monotonically decreasing inD.

Biological systems have presumably evolved towa
maximum efficiency, and technological systems should
designed to achieve maximum efficiency. Based on our
sults, we expect that the widely used sharp ratchet mo
will be found to be very applicable to scientific and engine
ing problems, not just for the fact that such models can
solved in closed form, but because they will also be excell
approximations to potentials found in the real world.

II. FORMULATION OF THE SOLUTION

The stochastic differential equation for the particle po
tion x(t) is

ẋ~ t !52U8~x!1A2Dẇ~ t !1j~ t !. ~2!

The steady-state transition probability of the tw
dimensional process„x(t),j(t)…, p5p(x,j), satisfies the
forward master equation
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2
]

]x
@S~x!p#1D

]2p

]x2
1

1

t
Wp50, ~3!

where

S~x![2U8~x!I1Fa 0

0 2aG[2U8~x!I1J,

and the forward transition state matrix of the processj(t) is
given by

W5F21/2 1/2

1/2 21/2G .
We calculate the steady-state probability current in thx
variable. Denoting byYT5@1,1# the left eigenvector ofW,
corresponding to the zero eigenvalue, we have

2
]

]x
J[

]

]x
YTFD

]p

]x
2S~x!pG50.

Hence the currentJ is constant inx and is given by

J52YTFD
]p

]x
2S~x!pG5const. ~4!

We study the dependence ofJ5J(D,t) on the diffusion
coefficientD and the mean time between the jumps 2t.

We solve exactly the master equation~3! in each of the
constant force intervals (0,a) and (a,1). Wedetermine con-
stants of integration by requiring continuity, periodicity, a
jump conditions. Denoting byp(x,qL) the solution on (0,a),
and byp(x,qR) the solution on (a,1), we write these con-
ditions as continuity ata,

p~x5a,qR!2p~x5a,qL!50; ~5!

continuity and periodicity atx50,1,

p~x51,qR!2p~x50,qL!50; ~6!

the jump in the derivative ofp at x50 andx51 with the
periodicity of p,

DF]p

]x
~x51,qR!2

]p

]x
~x50,qL!G1~qR2qL!p~x50,qL!50;

~7!

the steady state of the telegraph noise,

E
0

a

p~x,qL!dx1E
a

1

p~x,qR!dx5F1/2

1/2G . ~8!

@Conditions~5–8! imply the jump condition atx5a,
DF]p

]x
~x5a,qR!2

]p

]x
~x5a,qL!G1~qR2qL!p~x5a,qL!

50,

so this condition need not be explicitly used.#
We denote byX15@1,1#T and X25@1,21#T the right

eigenvectors ofW, with the eigenvaluesm150 and m2
521, respectively. We write the solution to the mas
equation~3! as

p~x,qR(L)!5C1
R(L)X11(

i 52

4

Ci
R(L)pi

R(L) , ~9!

wherepi
R(L) is given bypi in Eq. ~10! with q replaced by

qR(L) ,

pi5S X11
Dr i1q

a
X2Dexp~r ix!, ~10!

and where$r i ,i 52,3,4% is the set of nonzero roots of th
algebraic equation

D2r412Dqr31Fq22a22
1

t
DGr22

1

t
qr50. ~11!

We impose the conditions~5–8! to determine the eight con
stants$Ci

R(L)%. Using the fact thatYTX250, together with
the form ~9! of the solution in Eq.~4!, we find that

J522qRC1
R522qLC1

L .

We solve the system given by Eqs.~3!, ~5!–~8! in the
asymptotic limits ofD!1, D@1, t!1, andt@1. To this
end, in a specified asymptotic limit, we solve Eq.~11! for the
rootsr ( i ) in the form of an asymptotic series~see the Appen-
dix!, write the solution~9!, and then solve the system o
eight equations for the constantsCi

R(L) . These constants, an
hence the current, are functions of the parametersD and t
through exponential and pre-ex˙ponential terms. The pre
eẋponential terms are expanded in asymptotic power ser
the exponential factors are kept in this form throughout
calculation, since they may be transcendentally large
small. The asymptotic interplay between these exponen
and algebraic terms requires careful analysis. In particu
the validity of an asymptotic formula for the current depen
on the validity of the asymptotic expansion of the roots
Eq. ~11!. Though the procedure of finding the solution m
seem to be straightforward, its implementation~described in
Sec. III below! is nontrivial.

This procedure can be generalized to calculate asymp
expansions for the current in an arbitrary periodic nonsy
metric sharp potential. The first step is to find the asympto
solution to the master equation~3! on each interval where the
force is continuous. The form of this expansion depends
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the chosen asymptotic limit. For example, ift!1 we seekp
in the WKB form p5exp@2c/At#k @21#. For the caseD
!1, p also has a WKB formp5exp@2f/D#k. Then con-
stants of integration are determined by employing the p
odicity, continuity, and marginal conditions analogous
Eqs.~5!–~8!.

III. SOLUTION METHODS

We performed symbolic and numerical calculations us
MAPLE V ~Waterloo Software!, running on a 400-MHz Pen
tium II Linux-based system. The symbolic asymptotic so
tions were checked against direct numerical solutions, c
puted with up to 50 significant digits. Such precision w
necessary when multiplying exponentially large and ex
nentially small terms. Symbolic calculations took from mi
utes to days, and had to be organized carefully forMAPLE V

to be able to handle their complexity.
We solved the system@~5!–~8!# of eight equations with

eight unknowns, representing the amplitudes of the four
ementary solutions to Eq.~3! in each subinterval. After
simple row operations the matrix of the systemM has the
structure

M53
1 m12 m13 m14 21 m16 m17 m18

0 m22 m23 m24 0 m26 m27 m28

0 m32 m33 m34 0 m36 m37 m38

0 m42 m43 m44 0 m46 m47 m48

0 m52 m53 m54 m55 m56 m57 m58

0 m62 m63 m64 0 m66 m67 m68

0 m72 m73 m74 1 m76 m77 m78

0 m82 m83 m84 0 m86 m87 m88

4
and the right hand side isb5@0, . . . ,0,1,0#T. We solved the
systemMc5b using Cramer’s rule, wherec is the vector of
the Ci

R(L) coefficients.
For illustration, we describe the symbolic calculation

det@M #. This determinant has 1440 terms, each being a p
uct of six or seven of themi j ; this expansion is easily cal
culated withMAPLE V in terms of the genericmi j . In each of
the asymptotic limits considered (D small and large,t small
and large!, we construct the asymptotic expansion of the e
triesmi j in powers of the expansion parameter (t or D). For
each of 1440 terms we substitute these expansions of
mi j , and collect the coefficients of each of the powers of
expansion parameter. From each term in the determin
sum, each coefficient in the expansion is fully multiplied o
~often yielding an expression with dozens of terms!. The
coefficients of each power are appended to an output
when calculating the expansion up to orderk, we construct
i-

g

-
-

s
-

l-

f
d-

-

he
e
nt
t

e;

k11 files, so that thepth file contains the coefficient of the
pth power of the expansion parameter. This coefficient
written so separate lines of the file contain its separate s
mands. After all 1440 terms in the determinant sum are p
cessed in this way, the coefficient of thepth power of the
expansion parameter can be obtained by adding up all
lines of thepth file. In some cases, these files contain ov
23106 lines, so it is impossible to carry this out direct
within MAPLE V due to program limitations on the complex
ity of algebraic expressions, and also due to the amoun
intermediate memory needed; this is the motivation for co
puting the expansion of one determinant term at a time
collecting its coefficients into files.~When adding up the
coefficient files directly, at about 30 000 lines the system
overwhelmed and all available memory—in this case ab
360 megabytes—is exhausted.! Many of the expressions in
the files would cancel or combine if added directly~e.g.,
3abc1•••17abc1•••12abc, where there might be
thousands of terms hidden by the ellipses!. We developed a
technique to add up such large expressions, under the
sumption ~or hope! that they will eventually collapse to a
manageable set of terms. We sort each of the files by line
the normal alphabetic order~outside MAPLE V, using the
Unix sort utility!. Then we read a file intoMAPLE V and add
all these ordered lines up, one at a time. The sorting tend
bring like subexpressions close together so that combina
or cancellation can occur before the sum becomes too b
for MAPLE V to handle. There is sufficient cancellation wi
this method so that the system memory does not bec
exhausted. Adding up 23106 lines in this fashion takes
about 24 CPU hours. As will be seen below, in most ca
the final expressions are vastly simpler than the intermed
results.

IV. NO DIFFUSION „D[0… AND SMALL DIFFUSION
„D!1…

In this section first we calculate the current in the case
no diffusion,D50, and then study how small diffusion,D
!1, affects the current. In the caseD50, we first solve the
master equation~3! to find

p~x,qR(L)!5C1
R(L)X11C2

R(L)S a

qR(L)
X11X2Dexp~lR(L)x!,

wherelR(L)5qR(L) /@(qR(L)
2 2a2)t#. We calculate constant

of integration by requiring the jump condition atx
5a, S(a1)p(a1,qR)2S(a2)p(a2,qL)50, and the sta-
tionary marginal transition probability of the noise, as in E
~8!. „This jump condition together with Eq. ~8!
and the periodicity ofp @i.e., p(x511,qL)5p(x501,qL),
p(x502,qR)5p(x512,qR)] implies the jump condition at
x50/1 is S(12)p(12,qR)2S(01)p(01,qL)50.… Then we
calculate the current,J(D50,t)[JDzero(t)52YTS(x)p, to
find
JDzero~t!5
2qR

2qL
2@exp~lRa!2exp~lR1lLa!#

~qR1qL!@exp~lRa!2exp~lR1lLa!#1ta2~qR2qL!2@exp~lLa!21#@exp~lRa!2exp~lR!#
. ~12!
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We note that whenqR→2qL ~the symmetric potential!,
JDzero(t)→0. In the asymptotic limit of slow jumps whos
size isO(1), ~i.e., whent→`) we have

JDzero~t!5
qLqR~qL1qR!

a22~qL1qR!2
1OS 1

t D[JDzero~`!1OS 1

t D .

~13!

In the asymptotic limit of fast jumps ofO(1), ~i.e., when
t→0), we find thatJDzero is exponentially small int:
a

i
s

r-

fo
JDzero~t!5
1

t

qR
2qL

2

a2~qR2qL!2
elLa@11O~elR(a21)!#

~14!

[JDzero~0!@11O~elR(a21)!#. ~15!

As t increases, the current increases from exponenti
small values in 1/t to a value algebraically close to a con
stant.

In the diffusion limit of j(t) ~i.e., fast large jumps with
t5e2t̃, a5ã/e, ande→0), we have
JDzero~t!5e2
~qL1qR!qL

3qR
3 exp~2qRa/D!

ã6t̃2~qL2qR!2@exp~2qRa/D!2exp~2qR /D!#@exp~2qLa/D!21#
1O~e3!

[JDzero
di f f 1O~e3!,
whereD[t̃ã2 is the effective diffusion coefficient.
We next consider the case ofD!1. Nonzero diffusion

has singular smoothing effects on the system. While the m
ginal transition probability function inx of Eq. ~2! with D
[0 suffers discontinuities at the points where the force
discontinuous, the marginal transition probability in the ca
of DÞ0 is smooth; see Fig. 2.

Effects of smallD on the current are singular in a diffe
ent manner. We find the current

JsmallD~D,t!5JDzero~t!1DJsmallD
(1) ~D,t!1O~D2!,

~16!

whereJDzero is exactly the zero-diffusion current in~12!. We
find

JsmallD
(1) ~D,t!5JsmallD

(1) ~0,t!1O~e2a/D!. ~17!

Figure 3 shows the graph of the analytical formula

FIG. 2. Marginal transition probability forqL53/4, qR521,
a52, whent51 and variousD. Short dashes,D51; dashes,D
50.1; solid line,D50.03; boxes,D50.
r-

s
e

r

JsmallD
(1) (0,t). The exact formula forJsmallD

(1) (0,t) is ex-
tremely lengthy~many pages!, so we show its graph and
study its asymptotic properties int. For t@1 @j(t) is a
slowly changing telegraph process#, we find

JsmallD
(1) ~0,t!52

~2qL1qR!2~qR1qL!a

~qL1qR1a!2~qL1qR2a!2
1OS 1

t D
~18!

[JsmallD
(1) ~0,̀ !1OS 1

t D
while, for t!1,

JsmallD
(1) ~0,t!5F 1

t3

~qL
21a2!qL

3qR
3

a2~qR2qL!3~2qL1a!3~a1qL!3

1OS 1

t2D GeqLa/[(qL
2

2a2)t]~11TST!, ~19!

FIG. 3. Graph of JsmallD
(1) (0,t) vs t for qL53/4, qR521,

a52.
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where TST denotes a transcendentally small term. Here
have

TST5O~max@e2qRqL /[(qL2qR)(qR
2

2a2)t] ,e2qLa/[(qL
2

2a2)t] # !.

@In the derivation of Eq.~19! we explicitly assume thatqL
Þ2qR when we disregard exponentially small terms. This
why Eq. ~19! does not reduce to zero whenqL1qR50, al-
though the exact formula forJsmallD

(1) (0,t) does simplify to
zero in this case.#

For a fixedt!1, the currentJsmallD(D,t) ~as a function
of D) approaches a transcendentally small value with a tr
scendentally small slope asD→0. We note thatJDsmall

(1) (0,t)
takes on positive values fort!1, according to Eq.~19!,
while it takes on negative values fort@1, according to Eq.
~18!. Hence there are valuest* and t** such that
JDsmall

(1) (0,t).0 for t,t* , and JDsmall
(1) (0,t),0 for t

.t** . Numerical evaluation of the exact formula fo
JsmallD

(1) (0,t) suggests thatt* 5t** ; compare Fig. 3. In the
discussion below we assume that this holds@i.e.,
JDsmall

(1) (0,t) has only one zero fortP(0,̀ )#. In Sec. VI we
show that asD→`,J(D,t)→0. For a fixed value oft
,t* , the slope ofJ(D,t) is positive forD!1, andJ is an
increasing function ofD, while for D@1, J is a decreasing
function ofD. HenceJ achieves a maximum as a function
D, if t,t* . We conclude that for eacht,t* , there is a
value of D which maximizes the current. Fort.t* , the
e

s

n-

currentJ is a decreasing function ofD. Hence fort suffi-
ciently small, a little bit of diffusion increases the curren
but a lot of diffusion diminishes it.

The analysis of this section is valid for values oft such
that t@D. To see this, we note that the terms in t
asymptotic formulas for the roots in Eq.~A1! depend on the
quotient Dm21/tm. We explicitly assume thatD!1 and
higher order~disregarded! terms are asymptotically smalle
than those kept, which impliest@D. The range of validity
of the asymptotic expansion is important to keep in mi
when taking the iterated limit ofD!1 andt!1. The result
~16! is valid for D!1 andt@D. The validity of the result
breaks down whent5O(D) or smaller.

SinceJsmallD
(1) can be negative, one might be tempted

postulate current reversal; by adding just enough ofJsmallD
(1)

in Eq. ~16! to JDzero in Eq. ~12!—that is, by selecting the jus
right value of the diffusion coefficientD—one might be able
to change the sign of the current as a function oft. However,
this only happen for values oft!D, when the above asymp
totics are not valid. We do not observe current reversal in
ratchet model.

V. FAST JUMP NOISE, t!1

In the case oft!1 we find that the currentJ is given by

Jsmallt~D,t!5t2J41t5/2J51O~t3!. ~20!

The coefficientsJ4 andJ5 are given by
J45
1

2

1

D3
qL

2qR
2a2

~2e1/(ADAt)1e2a/(ADAt)!e2qLa/(2D)

~e2qLa/D21! ea/(ADAt)~e1/(ADAt)21!
, ~21!

J55
1

4

1

D7/2
a2qL

2qR
2F~2qLe4a/(ADAt)F2qLe2(11a)/(ADAt)F1qLe2a/(ADAt)F1qLe2/(ADAt)F2qLe(11a)/(ADAt)1qLe(113a)/(ADAt)

1qLe(113a)/(ADAt)eqLa/D2qLe(11a)/(AD At)eqLa/D2qRe2/(ADAt)F1qRe(21a)/(ADAt)2qRe3a/(ADAt)1qRe2a/(ADAt)F
2qRe2(11a)/(ADAt)F1qRe(21a)/(ADAt)eqLa/D1qRe4a/(ADAt)F2qRe3a/(AD At)eqLa/D!/@e2a/(ADAt)

3~e1/(AD At)21!2~211eqLa/D!2#
whereF[eqLa/(2D).
In general, the coefficientJ4 is exponentially small inAt.

Specifically, if 2qR.qL then we have

J45 j 4e(a21)/(ADt)@11O~e(122a)/(ADt)!#,

where

j 4[
1

2

1

D3
qL

2qR
2a2

eqLqR /[2D(qL2qR)]

~eqLqR /[D(qL2qR)]21!
. ~22!

The nonexponentially small contribution toJ comes from the
coefficient j 5 defined below. Rearranging the terms inJ5 we
find

J55 j 51 j 5
Le2a/(ADt)1 j 5

Re2(12a)/(ADt)1TST,
where

j 552
1

4

1

D7/2
~qL1qR!qR

2qL
2a2

eqLa/D

~211eqLa/D!2
, ~23!

j 5
L5

1

4

1

D7/2
a2qR

3qL
2eqLa/(2D)~11eqLa/D!

~211eqLa/D!2
,

j 5
R5

1

4

1

D7/2
a2qR

2qL
3eqLa/(2D)~11eqLa/D!

~211eqLa/D!2
.

Hence with a transcendentally small error we have

Jsmallt~D,t!5 j 5t5/21O~t3!. ~24!
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We note that the analysis of this section is valid fort!1 and
values ofD which satisfy the conditionsDt!1 andD@t.
The first of these conditions results from the asymptotic
rangement of terms when solving the system of linear eq
tions ~5!–~8!. The second condition stems from the assum
tion that higher order terms in the expansion of the roots
Eq. ~A2! are asymptotically smaller than the lower ord
terms which are kept in the calculations.

Up to this point, in this section we have assumed thaD
5O(1). If we assume thatD!1 ~while D@t), thenJ4 in
Eq. ~21! is exponentially small, both int andD. Specifically,
we have

J452
1

2

1

D3
qL

2qR
2a2e2qLqR /[2(qL2qR)D]e2qL /[(qL2qR)ADt]

3@11O~eqLqR /[D(qL2qR)] !#,

andJ5, or equivalentlyj 5, becomes exponentially small inD.
Hence in the iterated asymptotic limitt!1,D!1 the current
is exponentially small inD, and

Jsmallt~D,t!52
t5/2

D7/2
~qL1qR!qR

2qL
2a2 exp~2qLa/D !

1O~t3!5OS t5/2

D7/2
e2qLa/DD . ~25!

We emphasize that the iterated limitst!1, D!1 and D
!1, t!1 are not interchangeable; compare the result E
~16! with ~15! and ~19!.

If D@1 then

j 552
1

4

1

D3/2
a2~qL1qR!~qL2qR!21OS 1

D7/2D , ~26!

so that we have

Jsmallt~D,t!52
t5/2

4D3/2
a2~qL1qR!~qL2qR!2

1OS t5/2

D7/2
,t3D

5OS t5/2

D3/2D . ~27!

We observe that for a fixedt!1, the dependence of th
current,Jsmallt(D,t), on D changes from exponential to a
gebraic asD varies from values asymptotically small to a
ymptotically large. AsD increases, the current increases fi
through exponentially small values, it achieves its maximu
and finally decays algebraically to zero. According to E
~23! the maximum value of the current is achieved for t
value ofD which is the solution to the transcendental equ
tion

2qLqR~11eqLa/D!27D~qL2qR!~12eqLa/D!50. ~28!

This equation predicts the current-maximizingD with a pre-
cision determined by the asymptotic calculations.
r-
a-
-
n

s.

t
,
.

-

VI. SLOW JUMP NOISE „t@1…

We solve Eq.~11! in the asymptotic limit oft@1, while
keepingD fixed. For the asymptotic formulas, for the roo
in Eq. ~A3! to be valid we must have alsot@D. We calcu-
late the current to obtain

Jlarget~D,t!5Jlarget
(0) ~D !1OS 1

t D . ~29!

The exact formula for the leading order termJlarget
(0) (D) is

lengthy ~about one page!, and by itself does not give an
insight. To get more information we study it in asymptot
limits.

If D@1 then we have

Jlarget
(0) ~D !5

1

D4

1

360

a2qL
3qR

3~qL1qR!

~qL2qR!4
1OS 1

D5D , ~30!

so that the current decays to zero algebraically at a rate
dependent oft.

If D!1 then we have

Jlarget~D !5FJDzero~`!1DJsmallD
(1) ~0,̀ !1OS D2,

1

t D G
3@11O~e2a/D,eqR(a2qL)/[D(qL2qR)] ,

e2qL(qR1a)/[D(qL2qR)] !#, ~31!

where JDzero(`) and JsmallD
(1) (0,̀ ) are given by Eqs.~13!

and~18!, respectively. Hence the iterated limits oft@1 and
D!1, andD!1 andt@1 give the same results; they a
interchangeable.

In the asymptotic limit of t@1 the telegraph noise
changes slowly, staying in each of its values6a on average
for times of length 2t. As t→` one of the levels of the
noisea or 2a is selected with probability 1/2, and the cu
rent J is the average~with respect to the stationary nois
distribution! of the two currents obtained from the dynami
~2! with j5a or j52a. So, to leading order,Jlarget(D,t)
is independent oft, as shown in Eq.~29!.

VII. STRONG DIFFUSION „D@1…

Asymptotic expansion of the roots of Eq.~11! in the case
of D@1 is valid fort@1/D; compare Eq.~A4!. In this case,
the exponential terms which depend on 1/D can be expanded
in power series, so that the entries of the matrix~5!–~8! can
be represented by asymptotic series in powers of 1/D. We
calculate the current as

JlargeD~D,t!5
1

D4

1

360

a2qL
3qR

3~qL1qR!

~qL2qR!4
1OS 1

D9/2D .

~32!

We note that to leading order the largeD result is exactly
the same as the result of the iterated limitt@1 andD@1;
compare Eq.~30!. The asymptotic limits ofD@1 andt@1
are interchangeable. If the jumps are not too frequentt
@1/D) then the strong diffusion smoothes and smears th
effects, so that the current vanishes algebraically inD at a
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rate independent oft. This is in contrast to the caset!1 and
D@1/t, when the current decays algebraically to zero
D23/2 at a rate proportional tot5/2; compare Eqs.~26! and
~27!. If we take t5D in Eqs. ~26! and ~27! then Jsmallt
5O(1/D4), but the numerical factors in Eqs.~32! and ~27!
are different. Higher order terms in powers oft in the series
for Eq. ~27! are needed to account for all terms ofO(1/D4)
whent51/D.

If t!1/D then the current is asymptotically smaller th
O(1/D4), according to Eq.~27!, and it decays algebraicall
in t andD.
f
nt

e.

,
t

m

VIII. DISTINGUISHED LIMITS

The results of Secs. IV and V show that the iterated lim
D!1 andt@1 are interchangeable. In contrast, the resu
of Secs. IV and VI show that the limitst!1 andD@1 are
not interchangeable. We now show that Eq.~20! is valid
uniformly for D@t, including D5O(1/t) and D@1/t. In
particular, we show how Eq.~32! carries through the distin
guished limit of t51/D to the regimet!1 in which Eq.
~27! holds. To establish this result we substituteD
51/(k2t) in Eq. ~20! and then expand in a Taylor series
powers oft to obtain, to leading order,
JsmalltS 1

k2t
,t D 52

1

4
~qL2qR!k3a2t4S 2

qR
2~22EL

2ER2ER
21e2kER

22112ER1EL
2ER

2 !

ER
2

2
qL

2~2122ELER
22e2kER

212EL1ER
21EL

2ER
2 !

ER
2

12
qLqR~211ELER!~ELER2EL1k EL2k ER2ER11!

ER
2 D Y ~ek21!2, ~33!
-

-

where

EL[expS kqL

qL2qR
D and ER[expS kqR

qL2qR
D .

If k51 then Eq.~33! is the distinguished limit result o
t!1 andD51/t. To obtain the expression for the curre
for the values ofD even larger thanO(1/t) we now take the
limit as k→0 in Eq. ~33! to obtain

Jsmallt,largeD5
1

360
k8t4

qL
3qR

3a2~qR1qL!

~qL2qR!4
. ~34!

Recalling thatD51/(k2t), formulas~32! and ~34! are iden-
tical.

The limits t!1 andD!1 are also not interchangeabl
The transition between the results~19! ~iterated limit D
!1,t!1) and~25! ~iterated limit t!1,D!1) occurs when
D5kt, wherek5O(1). Thecurrent is exponentially small
J;exp(2k/D), with k being proportional to the smalles
~positive! root of the cubic equation

kY312qY21~q22a22k!Y2q50.
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APPENDIX: ASYMPTOTICS OF EIGENVALUES

We denote byr (0)50 the zero eigenvalue of Eq.~11!,
and seek the expansions of the other roots of Eq.~11! in the
various asymptotic limits. In the case 0,D!1, we obtain
r (2)5
q

t~q22a2!
2

D

t2

q~q21a2!

~q22a2!3
1OS D2

t3 D ,

r (3)5
2q1a

D
1

1

2

1

t~2q1a!
2

1

8

D

t2

a1q

~2q1a!3a

1OS D2

t3 D , ~A1!

r (4)52
q1a

D
2

1

2

1

t~q1a!
1

1

8

D

t2

2q1a

~a1q!2a
1OS D2

t3 D .

This expansion is valid fort@D.
In the asymptotic limit oft!1, the asymptotic expan

sions of the eigenvalues are

r (2)52q/D1t
a2q

D2
2t2

a4q

D3
1O~t3/D4!,

r (3)5
1

ADt
2

1

2

q

D
1

1

8

q214a2

D3/2
At1O~t/D2!, ~A2!

r (4)52
1

ADt
2

1

2

q

D
2

1

8

q214a2

D3/2
At1O~t/D2!.

This expansion is valid forD@t.
In the asymptotic limit oft@1, the asymptotic expan

sions of the eigenvalues are
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r (2)5
1

t

q

q22a2
2

D

t2

q~a21q2!

~q22a2!3
1OS D2

t3 D ,

r (3)5
2q1a

D
2

1

2

1

t

1

q2a
1

1

8

D

t2

q1a

~q2a!3a
1OS D2

t3 D ,

~A3!

r (4)52
q1a

D
2

1

2

1

t

1

q1a
2

1

8

D

t2

q2a

~q1a!3a
1OS D2

t3 D .

This expansion is valid fort@D.
The asymptotic expansion of the eigenvalues in the c

of D@1 is valid for t@1/D, and is given by
t.
se

r (2)52
q

D
1

1

D2

a2q

t
1OS 1

D3t2D ,

r (3)5
1

ADAt
2

1

2

q

D
1OS 1

D3/2At
D , ~A4!

r (4)52
1

ADAt
2

1

2

q

D
1OS 1

D3/2At
D .

In the actual calculations~cf. Sec. III!, these expansions ar
needed to higher order, so that themi j are calculated with
sufficient accuracy.
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